Sidor

onsdag, mars 28, 2018

Intressanta samtal - Utfall och utfallsrum

Nu är jag där igen. Missar att lägga ut alla de fiffiga tips och idéer och förslag som jag hela tiden får på jobbet. Främst är det i undervisningssituationerna som de kommer. Från studenter. Det kan vara en idé till en aktivitet att utföra med elever eller bara en utmanande fråga, men det som kännetecknar tipsen är att de alltid leder till givande samtal med studenterna.

Ett exempel på ett sådant givande samtal ledde till den här anteckningen som jag delade med studenterna i kursen:

Utfall är som vi tidigare har sagt alla olika möjligheter, d.v.s. det som kan hända, i ett slumpförsök. Vid tärningskast gäller att tärningens olika sidor, 1, 2, 3, 4, 5 och 6, representerar de olika utfallen. I ett lotteri har vi bara utfallen vinst eller nit. Här handlar det om olika "sorter" på resultaten i ett slumpförsök.

Men sedan skiljer sig dessa båda exempel åt vad gäller utfallsrummen.

Utfallsrum definieras som "mängden av alla möjliga utfall i ett försök". När det gäller vår sexsidiga tärning så är utfallsrummet detsamma som alla utfall tillsammans, d.v.s. utfallsrummet innehåller en av varje av tärningssidorna 1, 2, 3, 4, 5 och 6. Men i lotteriet kan utfallsrummet se olika ut beroende på antal vinst- respektive nit-lotter. I ett lotteri med 10 lotter varav 1 vinst skulle utfallsrummet bestå av alla dessa utfall, d.v.s. vinst, nit, nit, nit, nit, nit, nit, nit, nit och nit, alltså 1 vinst och 9 nit. I ett annat lotteri kanske det finns 100 lotter med 1 vinst och 99 nit. Utfallsrummet måste visa på dessa fördelningar eftersom utfallsrummets utseende påverkar sannolikheterna för de olika utfallen i ett försök. Här handlar det om hur många det finns av varje "sort" i ett slumpförsök.

Vi tittade på olika utfallsrum på lektionen Sannolikhet 1. Då var det fyra olika skålar med kulor, gröna och orangea, där det var olika utseende på utfallsrummen. Och dessa påverkade också möjligheterna att t.ex. slumpvis dra en grön kula. Om det finns lika många gröna som orangea kulor, d.v.s. likformig fördelning, så ger det en annan sannolikhet att slumpvis dra en grön kula än om det finns 2 orangea kulor för varje grön kula i skålen. Gå gärna in och kolla i den kladdade versionen av presentationen, jag har skrivit fler kommentarer (med grönt) efter lektionerna, för att hjälpa er.

Bara så att vi alla är klara med vad vi menar med utfallsrum, så kan ni lugnt slappna av och strunta i hur man med olika "parenteser", {grön, orange, orange}, skriver detta med matematiska symboler. Det är knappast meningsfullt för er att fastna i dessa detaljer, utan om ni har förstått att utfallsrummens utseende vad gäller antalen av de olika utfallen är viktigt, eftersom inte alla slumpförsök har likformig sannolikhetsfördelning (som tärning, alla sidor har samma chans), så är det absolut tillräckligt för vad vi behöver förstå och även behöver få eleverna att upptäcka så att de inte fastnar i det missförstånd som jag har sett bland gymnasieelever, t.ex. som framgår av det andra exemplet nedan:

Ex. 1: I en kulpåse finns en röd, en grön och en blå kula. Sannolikheten att slumpmässigt dra en röd är 1/3. Det är korrekt. (Här är det mycket riktigt en likformig sannolikhetsfördelning, d.v.s. alla utfall har samma sannolikhet i ett slumpförsök.)

Ex. 2: I en kulpåse finns tre röda, en grön och en blå kula. Sannolikheten att slumpmässigt dra en röd är 1/3. Det är inte korrekt. Men vissa elever motiverar denna missuppfattning med att säga: Det finns tre färger. Då har man 1/3 chans att få röd. (Har inte förstått vad icke likformig sannolikhetsfördelning innebär.)

Den här missuppfattningen skulle leda till att man också tror att det är lika stor chans att få vinst som nit i ett lotteri, för det finns bara två utfall. Och detta är ju inte alls särskilt troligt, det vet vi ofta av egen erfarenhet...

Alltså: Strunta i hur man skriver utfallsrummet "matematiskt" och jobba för att förstå vad det får för effekt för vår förståelse av sannolikhetsbegreppet istället.

Lycka till!

/Monica


Inga kommentarer:

Skicka en kommentar