Snart terminsstart! Visserligen dröjer det till 2 september på SU, men ändå... Vi är igång och planerar och fixar inför kursstart likaväl som bedömer kompletteringar och avrundar förra terminen. Som överallt i skolans värld är det inget som är "klappart och klart". Förändringar sker in i det sista och det är bara att anpassa sig.
Tur för mig att det är så väldigt roligt att jobba med människor och utbildning. Igår - på bussen hem från jobbet - träffade jag en f.d. gymnasieelev, en elev ur min sista mentorsklass. Han verkade ha det bra; hade inte haft svårt att få jobb i skilda branscher, hade hunnit resa några månader i Asien och planerade att påbörja eftergymnasiala studier. Trevlig, sansad och positiv ung man.
Det är då man tänker: Undrar om jag har varit till någon som helst nytta för honom över huvud taget. Eller om jag snarare har gjort "onytta"... Jag försöker att fokusera på det som varit positivt under våra år ihop, det som har fungerat bra. Och hur avgör jag det? Hur vet jag vad som har varit bra för mina elever egentligen? Det är helt klart inte alltid undervisningen. Min "buss-elev" sade att samhällskunskap nog hade varit det tråkigaste ämnet på gymnasiet. Vem var lärare, tro..? Och matte var ju inte heller något favoritämne, så där hade han nöjt sig med att klara A-kursen utan ansträngning genom att ha tillräckligt goda förkunskaper från nian. Jag hade knappast tillfört något under matematiklektionerna.
Nej, nu är inte tid att grubbla! Men, det vore toppen om det fanns mer tid - under läsåret! - att faktiskt reflektera, rekapitulera och utvärdera den verksamhet man bedriver. Så här vid terminsstart är detta knappast i fokus för mina lärarkollegor. Nu handlar det om att planera och fixa inför kursstart. Vi får återkomma till reflektionerna senare.
Kanske på en buss på väg hem efter jobbet en dag?
fredag, augusti 15, 2014
lördag, februari 15, 2014
Kalkylblad i undervisningen
På måndag har jag ett seminarium med studenterna i grundlärarprogrammet F-3, i en kurs som behandlar statistik, sannolikhetslära och algebra. Då ska vi titta på hur man kan använda kalkylblad i undervisningen, både direkt med eleverna men också för att lärare ska kunna skapa tydliga och enkla diagram och tabeller som går lätt att använda i undervisningen.
Vi går igenom några grundläggande funktioner i kalkylblad (vilka som helst, vi använder Googles kalkylblad) och tittar på några exempel. Till detta pass har jag totat ihop en mycket enkel presentation som man kan titta på HÄR. Det hela blir ganska spännande eftersom jag misstänker att studenternas kunskaper i området varierar extremt mycket. Som vanligt. Och precis så är det ju också i skolan, där det krävs av läraren att vara förberedd på stor spridning i elevernas kunskaper.
Vilket påminner mig om att genast återgå till läsningen av studenternas analys av elevlösningar. Som gruppuppgift har studenterna fått i uppgift att analysera några elevlösningar och dra slutsatser om hur den fortsatta undervisningen kan se ut. Just för att visa vilken "bredd" det måste finnas i ett matematikklassrum och hur viktigt det är att läraren därför är redo att möta elevernas utvecklingsbehov.
Vi går igenom några grundläggande funktioner i kalkylblad (vilka som helst, vi använder Googles kalkylblad) och tittar på några exempel. Till detta pass har jag totat ihop en mycket enkel presentation som man kan titta på HÄR. Det hela blir ganska spännande eftersom jag misstänker att studenternas kunskaper i området varierar extremt mycket. Som vanligt. Och precis så är det ju också i skolan, där det krävs av läraren att vara förberedd på stor spridning i elevernas kunskaper.
Vilket påminner mig om att genast återgå till läsningen av studenternas analys av elevlösningar. Som gruppuppgift har studenterna fått i uppgift att analysera några elevlösningar och dra slutsatser om hur den fortsatta undervisningen kan se ut. Just för att visa vilken "bredd" det måste finnas i ett matematikklassrum och hur viktigt det är att läraren därför är redo att möta elevernas utvecklingsbehov.
Etiketter:
algebra,
grundlärare,
kalkylblad,
sannolikhetslära,
statistik
söndag, januari 26, 2014
Slut på tid!
Ja, det är verkligen så det känns just nu. Och så det har känts ett tag. Sedan ett par veckor innan jul, faktiskt. Jag hinner inte med allt som måste göras! Frustrerande - förstås - men jag ser ljuset i tunneln några veckor framåt i tiden... Ska bara göra klart allt först...
Samtidigt är det väldigt roligt att ha en massa viktiga saker att göra. Som dessa tentor jag precis har blivit klar med i två olika kurser, MAY I och MAY II. Vansinnigt roligt att bedöma! Jag lär mig hur mycket som helst allt eftersom jag läser studenternas didaktiska idéer! Tentorna är visserligen summativa i sin karaktär, men bedömningen ska vara rättvis och korrekt. Det är inget man gör på en kafferast, precis...
Och nu har jag satt tänderna i en hel hög rapporter från väldigt intressanta fältstudier som studenterna i en distanskurs har genomfört i sina egna klasser (dessa studenter är redan lärare och läser bara in matematiklärarbehörighet). Helt makalöst intressanta lektioner har genomförts runt om i länet! Vad fantastiskt att jag får ta del av dessa. Att läsa och bedöma studenternas rapporter är ett viktigt uppdrag som jag tar på största allvar. Studenterna har lagt ner tid och engagemang i en kurs på universitetet och jag vill gärna ge någon typ av framåtsyftande respons på deras arbete utöver ett betyg kopplat till kursens kunskapskrav. Ett hedersuppdrag, helt enkelt!
Sedan har jag också fått vara med och planera för en helt ny kurs för blivande lärare i åk F-3. Både läskigt och spännande, får jag lov att säga. Tur att jag har sådana rutinerade, trygga och skickliga kollegor att samarbeta med! Nu är vi igång med undervisningen inom områdena "statistik, sannolikhetslära och algebra" och vi har nog fått till en riktigt, riktigt bra kurs, tror jag. (Återkommer med information när jag hört vad studenterna tycker, men redan i torsdags hörde jag några som sade att seminariet om kombinatorik var jättebra och att "mattekurserna alltid är bäst av alla kurser")
Om ett par veckor bär det dessutom iväg till Umeå på Matematikbiennalen. Då kommer jag att hänga med en kollega på ett roligt kombinatorik- och sannolikhetslära-pass!
Slut på tid? Ja, absolut. Men det får jag ta igen senare i vår... säkert... troligtvis... eller..? Åter till läsningen! Vi hörs!
Samtidigt är det väldigt roligt att ha en massa viktiga saker att göra. Som dessa tentor jag precis har blivit klar med i två olika kurser, MAY I och MAY II. Vansinnigt roligt att bedöma! Jag lär mig hur mycket som helst allt eftersom jag läser studenternas didaktiska idéer! Tentorna är visserligen summativa i sin karaktär, men bedömningen ska vara rättvis och korrekt. Det är inget man gör på en kafferast, precis...
Och nu har jag satt tänderna i en hel hög rapporter från väldigt intressanta fältstudier som studenterna i en distanskurs har genomfört i sina egna klasser (dessa studenter är redan lärare och läser bara in matematiklärarbehörighet). Helt makalöst intressanta lektioner har genomförts runt om i länet! Vad fantastiskt att jag får ta del av dessa. Att läsa och bedöma studenternas rapporter är ett viktigt uppdrag som jag tar på största allvar. Studenterna har lagt ner tid och engagemang i en kurs på universitetet och jag vill gärna ge någon typ av framåtsyftande respons på deras arbete utöver ett betyg kopplat till kursens kunskapskrav. Ett hedersuppdrag, helt enkelt!
Sedan har jag också fått vara med och planera för en helt ny kurs för blivande lärare i åk F-3. Både läskigt och spännande, får jag lov att säga. Tur att jag har sådana rutinerade, trygga och skickliga kollegor att samarbeta med! Nu är vi igång med undervisningen inom områdena "statistik, sannolikhetslära och algebra" och vi har nog fått till en riktigt, riktigt bra kurs, tror jag. (Återkommer med information när jag hört vad studenterna tycker, men redan i torsdags hörde jag några som sade att seminariet om kombinatorik var jättebra och att "mattekurserna alltid är bäst av alla kurser")
Om ett par veckor bär det dessutom iväg till Umeå på Matematikbiennalen. Då kommer jag att hänga med en kollega på ett roligt kombinatorik- och sannolikhetslära-pass!
Slut på tid? Ja, absolut. Men det får jag ta igen senare i vår... säkert... troligtvis... eller..? Åter till läsningen! Vi hörs!
söndag, januari 05, 2014
Samla länkar - Hur?
I mitt jobb får man så många tips och hittar så många fiffiga (eller mindre fiffiga) länkar. Som man förstås vill spara någonstans. Frågan är bara: Hur ska jag kunna samla dem på ett något så när strukturerat sätt? Jag har testat att göra Google-dokument med länkarna, vilket förstås fungerar men som inte ger så god överblick när det börjar bli många länkar. Kolla t.ex. dessa:
- Länkar Statisitk
- Länkar Sannolikhetslära
- Länkar Negativa tal
Så tipsade min man mig om Pinterest och jag fick för mig att testa. Problemet är just nu bara att jag inte fått "dit" alla mina länkar från mina Google-dokument (några fungerade inte att "pin:a", direkt med en knapptryckning och jag orkade inte lära mig hur jag kommer runt problemet). Men det ska säkert gå att ordna. Så nu har jag en Pinterest-sida med några av länkarna. Titta gärna! Enkel webbadress som matchar denna bloggs namn: pinterest.com/mattefest.
- Länkar Statisitk
- Länkar Sannolikhetslära
- Länkar Negativa tal
Så tipsade min man mig om Pinterest och jag fick för mig att testa. Problemet är just nu bara att jag inte fått "dit" alla mina länkar från mina Google-dokument (några fungerade inte att "pin:a", direkt med en knapptryckning och jag orkade inte lära mig hur jag kommer runt problemet). Men det ska säkert gå att ordna. Så nu har jag en Pinterest-sida med några av länkarna. Titta gärna! Enkel webbadress som matchar denna bloggs namn: pinterest.com/mattefest.
Etiketter:
länkar,
pinterest,
sannolikheter,
sannolikhetslära,
statistik
torsdag, december 12, 2013
Begrepp i geometri
Igår hade jag en förmiddag med MAY I-gänget om geometri. Vi fokuserade på geometriska begrepp, omkrets och area. Varför är begreppsförståelse så viktigt för yngre barn? Hur kan man klassificera olika objekt, t.ex. fyrhörningar? Är en kvadrat också en romb? Hur kan man träna begreppsbildning med barn i åk 1-3? Hur förstår barn omkrets? Och area? Hänger omkrets och area ihop?
Det sista illustrerades med en övning där studenterna i mindre grupper fick varsit snöre, ca 2 m, som var ihopknutet i ändarna. Med snöret skulle de bilda en form som var så stor som möjligt och en som var så liten som möjligt.
Övningen kräver förståelse av begrepp som "stor" och "liten" men också för annat som inte tydligt framgick av instruktionen, att formen skulle vara en tvådimensionell, plan figur. Alla var överens om att vi menade att de skulle forma olika ytor, alltså arean av formen skulle vara stor respektive liten. Redan här krävdes att vi använde begrepp och beskrivningar som alla i gruppen förstod.
Detta är förstås också fallet med resultaten av övningen. Vi måste förstå vad de begrepp som används betyder. Många studenter började med att forma en triangel genom att hålla i snöret i tre punkter. Sedan satte någon dit ytterligare en hand och fick en fyrhörning som var större än triangeln, och därefter ännu en hand som gav en femhörning o.s.v. De flesta gjorde kopplingen till cirkeln automatiskt. För att göra en form som är så liten som möjligt började någon med en supersmal rektangel, någon annan med en triangel där det tredje hörnet nära nog sammanföll med ett av de andra två hörnen som hölls isär. Vi kom in på begrepp som "oändligt" nära/tunn o.s.v.
Förmiddagslektionen var väl förberedd av några kollegor som tidigare hade haft passet, jag behövde bara hänga med och få ta del av den fascinerande matematikvärld som är öppen för barn och lärare i yngre åldrar.
Idag hade vi två timmars räknepass där jag bestämde mig för att vara väldigt flexibel och låta studenterna styra innehållet. Jag var helt enkelt oförberedd - men på ett medvetet sätt, förstås ;-)
Lektionen blev till min glädje mycket bra, enligt studenterna själva. Vi tittade på gamla tentauppgifter och dessutom repeterade vi ganska ordentligt bråkräkning utifrån de fyra räknesätten. Studenterna fick själva förklara för varandra när vi tittade på en uppgift där man skulle känna igen vilken metod för subtraktion som några tänkta elever hade visat i sina lösningar, eftersom jag faktiskt inte kände till "namnen", d.v.s. de korrekta begreppen, för metoderna. "Räkna bakifrån med plus", "Translation" och "Talsorterna för sig" var metoder jag kände igen men inte kunde namnge. Bra att jag fick lära mig idag!
Att begreppsbildning är viktigt för all matematisk kommunikation är uppenbart efter dessa dagar.
Här hamnade vi när vi pratade om parallellogram. Frågan var egentligen "Består alla parallellogram av två (kongruenta, min anm.) trianglar"? Vi omformulerade frågeställningen och hittade dessa:
Det sista illustrerades med en övning där studenterna i mindre grupper fick varsit snöre, ca 2 m, som var ihopknutet i ändarna. Med snöret skulle de bilda en form som var så stor som möjligt och en som var så liten som möjligt.
Övningen kräver förståelse av begrepp som "stor" och "liten" men också för annat som inte tydligt framgick av instruktionen, att formen skulle vara en tvådimensionell, plan figur. Alla var överens om att vi menade att de skulle forma olika ytor, alltså arean av formen skulle vara stor respektive liten. Redan här krävdes att vi använde begrepp och beskrivningar som alla i gruppen förstod.
Detta är förstås också fallet med resultaten av övningen. Vi måste förstå vad de begrepp som används betyder. Många studenter började med att forma en triangel genom att hålla i snöret i tre punkter. Sedan satte någon dit ytterligare en hand och fick en fyrhörning som var större än triangeln, och därefter ännu en hand som gav en femhörning o.s.v. De flesta gjorde kopplingen till cirkeln automatiskt. För att göra en form som är så liten som möjligt började någon med en supersmal rektangel, någon annan med en triangel där det tredje hörnet nära nog sammanföll med ett av de andra två hörnen som hölls isär. Vi kom in på begrepp som "oändligt" nära/tunn o.s.v.
Förmiddagslektionen var väl förberedd av några kollegor som tidigare hade haft passet, jag behövde bara hänga med och få ta del av den fascinerande matematikvärld som är öppen för barn och lärare i yngre åldrar.
Idag hade vi två timmars räknepass där jag bestämde mig för att vara väldigt flexibel och låta studenterna styra innehållet. Jag var helt enkelt oförberedd - men på ett medvetet sätt, förstås ;-)
Lektionen blev till min glädje mycket bra, enligt studenterna själva. Vi tittade på gamla tentauppgifter och dessutom repeterade vi ganska ordentligt bråkräkning utifrån de fyra räknesätten. Studenterna fick själva förklara för varandra när vi tittade på en uppgift där man skulle känna igen vilken metod för subtraktion som några tänkta elever hade visat i sina lösningar, eftersom jag faktiskt inte kände till "namnen", d.v.s. de korrekta begreppen, för metoderna. "Räkna bakifrån med plus", "Translation" och "Talsorterna för sig" var metoder jag kände igen men inte kunde namnge. Bra att jag fick lära mig idag!
Att begreppsbildning är viktigt för all matematisk kommunikation är uppenbart efter dessa dagar.
Här hamnade vi när vi pratade om parallellogram. Frågan var egentligen "Består alla parallellogram av två (kongruenta, min anm.) trianglar"? Vi omformulerade frågeställningen och hittade dessa:
måndag, december 09, 2013
Algebra tar tid - mönster visar vägen
Vi hade avsatt 3 st 2-timmarsseminarier till algebra i kursen MAY II (Matematik för yngre åldrar, del 2). Det är bara ett problem. Det tar längre tid än så att jobba igenom både matematikinnehållet och några didaktiska frågor inom området. Självklart, tänker du som läser. Och visst är det logiskt att ett område som algebra behöver jobbas igenom ordentligt på en lärarutbildning. Därför har ett av våra pass med rubriken "Räkna inför tentan" fått stryka på foten och ge plats åt mer algebra. 4 st pass ska nog göra susen!
Egentligen skulle jag kunna pressa studenterna igenom innehållet på 6 timmar, det har jag gjort ett par gånger i kursen. Men de senaste två omgångarna har jag inte riktigt "velat" göra det. Istället har jag valt att stanna vid det som jag själv har upplevt som en viktig grund för hur man kan koppla algebra till aritmetik, geometri och andra redan "bekanta" situationer för elever.
Det matematikområde som jag har förstått (genom att hänga med skickliga kollegor och genom att läsa spännande kurslitteratur!) är viktigt att bearbeta ordentligt kan ges rubriken "Mönster". Här kan det handla om mönsterutvecklingar av vitt skilda slag, men det fiffiga är att man har möjlighet att visa på så många uttrycksformer när man jobbar med mönster.
I all kurslitteratur tar man upp de här sätten att se på matematikinnehåll med olika uttrycks- eller representationsformer (det finns en skillnad mellan begreppen, det får jag ta upp en annan gång), min översikt här ovan är inte på något sätt allmängiltig eller fullständig. Den ger bara ett exempel.
Vi "bottnade" alltså med en rejäl genomkörare av just "mönster och samband" bara för att jag fått för mig att det är viktigt...
Sedan har vi gått vidare till "funktioner och samband" som vi också jobbat med rätt ordentligt. Varför?
Det känns också rätt viktigt och avgörande, tycker jag. Här får vi den grafiska kopplingen mellan samband som kan visas med ett konkret mönster eller en tabell. Vi jobbade med att tolka grafer, både grafer med och utan gradering på koordinataxlarna, för att ge elever ett sätt att se på samband med andra typer av bilder än just bilder av punkter, stickor eller rutor. Grafer är också effektiva informationsbärare, vilket vi gick igenom med olika exempel. Istället för att bara nöta in hur man prickar in punkter i ett koordinatsystem (metod) behöver våra elever förstå vad grafen visar, vilket innehåll och budskap den bär.
Idag fick studenterna göra en övning som jag gjort med mina gymnasieelever (och även i en tidigare MAY II-kurs, se äldre blogginlägg) där man gruppvis fick i uppgift att matcha en graf, en värdetabell, en funktion i algebraisk form och en beskrivning med ord på rätt sätt. Det var sex olika samband som beskrevs med fyra uttrycksformer, tre samband beskrevs av linjära funktioner, ett av en andragradsfunktion, ett av en tredjegradsfunktion och ett av en exponentialfunktion. Du hittar övningen HÄR. Självklart kan man göra övningen både lättare och svårare för att den ska passa dina elever!
Studenterna kände sig inte helt säkra på flera av funktionstyperna, men de klarade ändå av att lösa uppgiften bra. Min fråga blev därför: Hur gjorde ni? Vilken strategi använde ni? Var började ni? Vilka uttrycksformer kopplade ni ihop först och hur gick ni vidare? Vi fick en intressant diskussion kring vilka möjligheter man har att lösa problem där man inte själv känner sig säker på innehållet. Vi måste förstås låta våra elever möta "det okända" och träna sig på att använda sina kunskaper på nya sätt. Att vara "gatsmarta", helt enkelt.
Vi hann också med att placera post-it-lappar på en helt "tom" graf på tavlan. X-axeln stod för vikt och y-axeln visade pris. På varje post-it-lapp stod en viss vikt och ett visst pris, t.ex. 500 g 16 kr och 2 kg 40 kr. Denna övning går variera hur mycket som helst, t.ex. genom att göra koordinatsystem på golvet med hjälp av maskeringstejp eller snören och jag fick också tips idag av en kollega att man som lärare kan göra i ordning ett koordinatsystem på en presenning och använda utomhus.
Det är klart att algebra tar tid! I morgon lägger vi våra sista två timmar på att titta på kopplingen till ekvationer! Oj, vad kul det ska bli!
Egentligen skulle jag kunna pressa studenterna igenom innehållet på 6 timmar, det har jag gjort ett par gånger i kursen. Men de senaste två omgångarna har jag inte riktigt "velat" göra det. Istället har jag valt att stanna vid det som jag själv har upplevt som en viktig grund för hur man kan koppla algebra till aritmetik, geometri och andra redan "bekanta" situationer för elever.
Det matematikområde som jag har förstått (genom att hänga med skickliga kollegor och genom att läsa spännande kurslitteratur!) är viktigt att bearbeta ordentligt kan ges rubriken "Mönster". Här kan det handla om mönsterutvecklingar av vitt skilda slag, men det fiffiga är att man har möjlighet att visa på så många uttrycksformer när man jobbar med mönster.
- Konkret - Det går bygga mönster med hjälp av olika typer av plockmaterial, t.ex. stenar, kottar, blad, klossar, lego, figurer, brickor, post-it-lappar m.m. Yngre elever kan bygga mönster och berätta om sina mönster, de kan byta mönster med varandra och se om en annan elev "ser" och "förstår" det mönster någon byggt. Här kopplar man det konkreta till den språkliga uttrycksformen.
- Bild/Visuellt/Geometriskt - Från det konkreta mönstret kan man förenkla och rita av ett mönster på papper. Här är det viktigt att inte lägga för mycket kraft på att "rita fint" utan att hellre rita förenklade, stiliserade bilder, t.ex. punkter, streck och rutor, för att symbolisera en mönsterutveckling. Barn som inte är "bra" på att rita ska inte hämmas av denna uttrycksform. Ofta kallas den bildliga versionen av mönstret för "geometriskt", vilket i sig kan vara olyckligt om man blandar ihop begreppet med "geometrisk talföljd", som är en speciell talserie. Istället menar man med "geometrisk uttrycksform" att man ritar en bild av mönsterutvecklingen. Denna bildliga modell ska självklart vara mer tidseffektiv än att bygga mönster med laborativt material. Yngre barn kan på samma sätt som ovan diskutera hur mönstret är uppbyggt, hur nästa figur ser ut och vad som händer i mönstret. Med ord som också kan skrivas ned på papper.
- Språkligt/Ord - Här är själva idén att man ska kunna beskriva mönsterutvecklingar med ord, som nämnt ovan.
- Tabell/Strukturerat - Med en tabell kan man också koppla ett mönster som beskrivs konkret eller med bild eller ord. Hur många föremål finns i figur nummer 1, nummer 2, nummer 3 o.s.v. Då får man en tydlig koppling mellan den konkreta eller bildliga uttrycksformen och den symboliska, i detta fall med siffror, beskrivna formen. Mönstret visas som ett talmönster i tabellform, vilket också är mycket tydligt. Ur tabellen kan det sedan bli tydligt hur vissa mönster ser ut generellt, t.ex. aritmetiska talföljder.
- Symboliskt/abstrakt - Egentligen gillar jag inte termen "abstrakt" eftersom det låter så "otillgängligt". Symboliskt är ju inte alls otillgängligt, snarare tvärtom, eftersom det är ett sätt att beskriva ett visst samband på ett effektivt och generellt sätt som gör att alla (d.v.s. alla som förstår symbolspråket) kan förstå mönstret på ett mycket tids- och platseffektivt sätt. Här vill vi nå en generell uttrycksform som ett algebraiskt uttryck eller en formel. Man kan utgå ifrån bilder, tabeller och/eller ord när man ska försöka formulera mönsterutvecklingen som algebraiskt uttryck. Själv tycker jag att tabeller som "mellansteg" gör kopplingen mycket lätt att se och förstå.
- Grafiskt/bild - Många mönster låter sig också beskrivas med hjälp av grafer. Jag minns mycket väl att förra årets muntliga nationella prov på gymnasiekurs Ma1c handlade om mönster som visualiserades både som bilder (prickar/tändstickor) och som grafer. Det var ett riktigt bra muntligt prov, tycker jag
I all kurslitteratur tar man upp de här sätten att se på matematikinnehåll med olika uttrycks- eller representationsformer (det finns en skillnad mellan begreppen, det får jag ta upp en annan gång), min översikt här ovan är inte på något sätt allmängiltig eller fullständig. Den ger bara ett exempel.
Vi "bottnade" alltså med en rejäl genomkörare av just "mönster och samband" bara för att jag fått för mig att det är viktigt...
Sedan har vi gått vidare till "funktioner och samband" som vi också jobbat med rätt ordentligt. Varför?
Det känns också rätt viktigt och avgörande, tycker jag. Här får vi den grafiska kopplingen mellan samband som kan visas med ett konkret mönster eller en tabell. Vi jobbade med att tolka grafer, både grafer med och utan gradering på koordinataxlarna, för att ge elever ett sätt att se på samband med andra typer av bilder än just bilder av punkter, stickor eller rutor. Grafer är också effektiva informationsbärare, vilket vi gick igenom med olika exempel. Istället för att bara nöta in hur man prickar in punkter i ett koordinatsystem (metod) behöver våra elever förstå vad grafen visar, vilket innehåll och budskap den bär.
Idag fick studenterna göra en övning som jag gjort med mina gymnasieelever (och även i en tidigare MAY II-kurs, se äldre blogginlägg) där man gruppvis fick i uppgift att matcha en graf, en värdetabell, en funktion i algebraisk form och en beskrivning med ord på rätt sätt. Det var sex olika samband som beskrevs med fyra uttrycksformer, tre samband beskrevs av linjära funktioner, ett av en andragradsfunktion, ett av en tredjegradsfunktion och ett av en exponentialfunktion. Du hittar övningen HÄR. Självklart kan man göra övningen både lättare och svårare för att den ska passa dina elever!
Studenterna kände sig inte helt säkra på flera av funktionstyperna, men de klarade ändå av att lösa uppgiften bra. Min fråga blev därför: Hur gjorde ni? Vilken strategi använde ni? Var började ni? Vilka uttrycksformer kopplade ni ihop först och hur gick ni vidare? Vi fick en intressant diskussion kring vilka möjligheter man har att lösa problem där man inte själv känner sig säker på innehållet. Vi måste förstås låta våra elever möta "det okända" och träna sig på att använda sina kunskaper på nya sätt. Att vara "gatsmarta", helt enkelt.
Vi hann också med att placera post-it-lappar på en helt "tom" graf på tavlan. X-axeln stod för vikt och y-axeln visade pris. På varje post-it-lapp stod en viss vikt och ett visst pris, t.ex. 500 g 16 kr och 2 kg 40 kr. Denna övning går variera hur mycket som helst, t.ex. genom att göra koordinatsystem på golvet med hjälp av maskeringstejp eller snören och jag fick också tips idag av en kollega att man som lärare kan göra i ordning ett koordinatsystem på en presenning och använda utomhus.
Det är klart att algebra tar tid! I morgon lägger vi våra sista två timmar på att titta på kopplingen till ekvationer! Oj, vad kul det ska bli!
Etiketter:
algebra,
algebraisk,
andragrandsfunktion,
exponentialfunktion,
funktion,
koordinatsystem,
may 2,
metod,
representationsform,
räta linjer,
strategi,
tips,
tredjegradsfunktion,
uppgift,
uttryck,
övning
måndag, november 18, 2013
Räkneberättelser om tal i andra baser
I MAY II-kurserna har studenterna fått i uppgift att hitta på räkneberättelser som handlar om tal i andra baser. Här är en riktigt spännande historia om Gun och den stora krokodilen. Mycket nöje och stort tack till Malin Andersson och Michaela Ericsson, de studenter som hittat på uppgiften.
Prenumerera på:
Inlägg (Atom)